Title: | Download Official Spatial Data Sets of Brazil |
---|---|
Description: | Easy access to official spatial data sets of Brazil as 'sf' objects in R. The package includes a wide range of geospatial data available at various geographic scales and for various years with harmonized attributes, projection and fixed topology. |
Authors: | Rafael H. M. Pereira [aut, cre] , Caio Nogueira Goncalves [aut], Paulo Henrique Fernandes de Araujo [ctb], Guilherme Duarte Carvalho [ctb], Rodrigo Almeida de Arruda [ctb], Igor Nascimento [ctb], Barbara Santiago Pedreira da Costa [ctb], Welligtton Silva Cavedo [ctb], Pedro R. Andrade [ctb], Alan da Silva [ctb], Carlos Kauê Vieira Braga [ctb], Carl Schmertmann [ctb], Alessandro Samuel-Rosa [ctb], Daniel Ferreira [ctb], Marcus Saraiva [ctb], Beatriz Milz [ctb] , Ipea - Institue for Applied Economic Research [cph, fnd] |
Maintainer: | Rafael H. M. Pereira <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.9.1 |
Built: | 2024-11-06 03:42:44 UTC |
Source: | https://github.com/cran/geobr |
Zips codes in Brazil are known as CEP, the abbreviation for postal code
address. CEPs in Brazil are 8 digits long, with the format 'xxxxx-xxx'
.
cep_to_state(cep)
cep_to_state(cep)
cep |
A character string with 8 digits in the format |
A character string with a state abbreviation.
uf <- cep_to_state(cep = '69900-000') # Or: uf <- cep_to_state(cep = '69900000')
uf <- cep_to_state(cep = '69900-000') # Or: uf <- cep_to_state(cep = '69900000')
Built-in dataset
name_state
: Title-case name of state (character)
abbrev_state
: Two-letter uppercase abbreviation of a state
code_grid
: Unique code of each quadrant of IBGE's statistical grid
data(grid_state_correspondence_table)
data(grid_state_correspondence_table)
A data frame sf with 139 rows and 3 columns
correspondence table indicating what quadrants of IBGE's statistical grid intersect with each Brazilian state
Last updated 2021-o3-21
Returns a data frame with all datasets available in the geobr package
list_geobr()
list_geobr()
A data.frame
Other support functions:
lookup_muni()
df <- list_geobr()
df <- list_geobr()
Input a municipality name or code and get the names and codes of the municipality's corresponding state, meso, micro, intermediate, and immediate regions
lookup_muni(name_muni = NULL, code_muni = NULL)
lookup_muni(name_muni = NULL, code_muni = NULL)
name_muni |
The municipality name to be looked up. |
code_muni |
The municipality code to be looked up. |
Only available from 2010 Census data so far
A data.frame
with 13 columns identifying the geographies information
of that municipality.
A data.frame
Other support functions:
list_geobr()
# Get lookup table for municipality Rio de Janeiro mun <- lookup_muni(name_muni = "Rio de Janeiro") # Or you can get a lookup table for the same municipality searching for its code mun <- lookup_muni(code_muni = 3304557) # Get lookup table for all municipalities mun_all <- lookup_muni(name_muni = "all") # Or: mun_all <- lookup_muni(code_muni = "all")
# Get lookup table for municipality Rio de Janeiro mun <- lookup_muni(name_muni = "Rio de Janeiro") # Or you can get a lookup table for the same municipality searching for its code mun <- lookup_muni(code_muni = 3304557) # Get lookup table for all municipalities mun_all <- lookup_muni(name_muni = "all") # Or: mun_all <- lookup_muni(code_muni = "all")
This data set covers the whole of Brazil's Legal Amazon as defined in the federal law n. 12.651/2012). The original data comes from the Brazilian Ministry of Environment (MMA) and can be found at "http://mapas.mma.gov.br/i3geo/datadownload.htm".
read_amazon(year = 2012, simplified = TRUE, showProgress = TRUE, cache = TRUE)
read_amazon(year = 2012, simplified = TRUE, showProgress = TRUE, cache = TRUE)
year |
Numeric. Year of the data in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read Brazilian Legal Amazon a <- read_amazon(year = 2012)
# Read Brazilian Legal Amazon a <- read_amazon(year = 2012)
This data set includes polygons of all biomes present in Brazilian territory and coastal area. The latest data set dates to 2019 and it is available at scale 1:250.000. The 2004 data set is at the scale 1:5.000.000. The original data comes from IBGE. More information at https://www.ibge.gov.br/apps/biomas/
read_biomes(year = 2019, simplified = TRUE, showProgress = TRUE, cache = TRUE)
read_biomes(year = 2019, simplified = TRUE, showProgress = TRUE, cache = TRUE)
year |
Numeric. Year of the data in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read biomes b <- read_biomes(year = 2019)
# Read biomes b <- read_biomes(year = 2019)
This function downloads either a spatial sf
object with the location of the
municipal seats (sede dos municipios) of state capitals, or a data.frame
with the names and codes of state capitals. Data downloaded for the latest
available year.
read_capitals(as_sf = TRUE, showProgress = TRUE)
read_capitals(as_sf = TRUE, showProgress = TRUE)
as_sf |
Logic |
showProgress |
Logical. Defaults to |
An "sf" "data.frame"
object or a "data.frame"
Other area functions:
read_amazon()
,
read_biomes()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read spatial data with the municipal seats of state capitals capitals_sf <- read_capitals(as_sf = TRUE) # Read simple data.frame of state capitals capitals_df <- read_capitals(as_sf = FALSE)
# Read spatial data with the municipal seats of state capitals capitals_sf <- read_capitals(as_sf = TRUE) # Read simple data.frame of state capitals capitals_df <- read_capitals(as_sf = FALSE)
Download spatial data of census tracts of the Brazilian Population Census
read_census_tract( code_tract, year = 2010, zone = "urban", simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_census_tract( code_tract, year = 2010, zone = "urban", simplified = TRUE, showProgress = TRUE, cache = TRUE )
code_tract |
The 7-digit code of a Municipality. If the two-digit code
or a two-letter uppercase abbreviation of a state is passed, (e.g. 33
or "RJ") the function will load all census tracts of that state. If
|
year |
Numeric. Year of the data in YYYY format. Defaults to |
zone |
For census tracts before 2010, 'urban' and 'rural' census tracts are separate data sets. |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other general area functions:
read_conservation_units()
# Read rural census tracts for years before 2007 c <- read_census_tract(code_tract=5201108, year=2000, zone="rural") # Read all census tracts of a state at a given year c <- read_census_tract(code_tract=53, year=2010) # or c <- read_census_tract(code_tract="DF", year=2010) plot(c) # Read all census tracts of a municipality at a given year c <- read_census_tract(code_tract=5201108, year=2010) plot(c) # Read all census tracts of the country at a given year c <- read_census_tract(code_tract="all", year=2010)
# Read rural census tracts for years before 2007 c <- read_census_tract(code_tract=5201108, year=2000, zone="rural") # Read all census tracts of a state at a given year c <- read_census_tract(code_tract=53, year=2010) # or c <- read_census_tract(code_tract="DF", year=2010) plot(c) # Read all census tracts of a municipality at a given year c <- read_census_tract(code_tract=5201108, year=2010) plot(c) # Read all census tracts of the country at a given year c <- read_census_tract(code_tract="all", year=2010)
This function downloads the shape file of minimum comparable area of
municipalities, known in Portuguese as 'Areas minimas comparaveis (AMCs)'.
The data is available for any combination of census years between 1872-2010.
These data sets are generated based on the Stata code originally developed by
Ehrl (2017) doi:10.1590/0101-416147182phe, and translated into R
by the
geobr
team.
read_comparable_areas( start_year = 1970, end_year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_comparable_areas( start_year = 1970, end_year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE )
start_year |
Numeric. Start year to the period in the YYYY format.
Defaults TO |
end_year |
Numeric. End year to the period in the YYYY format. Defaults
to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
These data sets are generated based on the original Stata code developed by Philipp Ehrl. If you use these data, please cite:
Ehrl, P. (2017). Minimum comparable areas for the period 1872-2010: an aggregation of Brazilian municipalities. Estudos Econômicos (São Paulo), 47(1), 215-229. https://doi.org/10.1590/0101-416147182phe
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
amc <- read_comparable_areas(start_year=1970, end_year=2010)
amc <- read_comparable_areas(start_year=1970, end_year=2010)
This data set covers the whole of Brazil and it includes the polygons of all conservation units present in Brazilian territory. The last update of the data was 09-2019. The original data comes from MMA and can be found at "http://mapas.mma.gov.br/i3geo/datadownload.htm".
read_conservation_units( date = 201909, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_conservation_units( date = 201909, simplified = TRUE, showProgress = TRUE, cache = TRUE )
date |
Numeric. Date of the data in YYYYMM format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other general area functions:
read_census_tract()
# Read conservation_units b <- read_conservation_units(date = 201909)
# Read conservation_units b <- read_conservation_units(date = 201909)
Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674).
read_country(year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE)
read_country(year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE)
year |
Numeric. Year of the data in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read specific year br <- read_country(year = 2018)
# Read specific year br <- read_country(year = 2018)
This function reads the the official data of disaster risk areas in Brazil (currently only available for 2010). It specifically focuses on geodynamic and hydro-meteorological disasters capable of triggering landslides and floods. The data set covers the whole country. Each risk area polygon (known as 'BATER') has unique code id (column 'geo_bater'). The data set brings information on the extent to which the risk area polygons overlap with census tracts and block faces (column "acuracia") and number of ris areas within each risk area (column 'num'). Original data were generated by IBGE and CEMADEN. For more information about the methodology, see deails at https://www.ibge.gov.br/geociencias/organizacao-do-territorio/tipologias-do-territorio/21538-populacao-em-areas-de-risco-no-brasil.html
read_disaster_risk_area( year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_disaster_risk_area( year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE )
year |
Numeric. Year of the data in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read all disaster risk areas in an specific year d <- read_disaster_risk_area(year=2010)
# Read all disaster risk areas in an specific year d <- read_disaster_risk_area(year=2010)
Data comes from the National Registry of Healthcare facilities (Cadastro
Nacional de Estabelecimentos de Saude - CNES), originally collected by the
Brazilian Ministry of Health. According to the Ministry of Health: "The
coordinates of each facility were obtained by CNES and validated by means of
space operations. These operations verify if the point is in the municipality,
considering a radius of 5,000 meters. When the coordinate is not correct,
further searches are done in other systems of the Ministry of Health and in
web services like Google Maps. Finally, if the coordinates have been correctly
obtained in this process, the coordinates of the municipal head office are
used. The geocode source used is registered in the database in a specific
column data_source
. Periodically the coordinates are revised with the
objective of improving the quality of the data." The date of the last data
update is registered in the database in the columns date_update
and
year_update
. More information in the CNES data set available at https://dados.gov.br/.
These data use Geodetic reference system "SIRGAS2000" and CRS(4674).
read_health_facilities(date = 202303, showProgress = TRUE, cache = TRUE)
read_health_facilities(date = 202303, showProgress = TRUE, cache = TRUE)
date |
Numeric. Date of the data in YYYYMM format. Defaults to |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read all health facilities of the whole country h <- read_health_facilities( date = 202303)
# Read all health facilities of the whole country h <- read_health_facilities( date = 202303)
Health regions are used to guide the the regional and state planning of health services. Macro health regions, in particular, are used to guide the planning of high complexity health services. These services involve larger economics of scale and are concentrated in few municipalities because they are generally more technology intensive, costly and face shortages of specialized professionals. A macro region comprises one or more health regions.
read_health_region( year = 2013, macro = FALSE, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_health_region( year = 2013, macro = FALSE, simplified = TRUE, showProgress = TRUE, cache = TRUE )
year |
Numeric. Year of the data in YYYY format. Defaults to |
macro |
Logic. If |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read all health regions for a given year hr <- read_health_region( year=2013 ) # Read all macro health regions mhr <- read_health_region( year=2013, macro =TRUE)
# Read all health regions for a given year hr <- read_health_region( year=2013 ) # Read all macro health regions mhr <- read_health_region( year=2013, macro =TRUE)
The Immediate Geographic Areas are part of the geographic division of Brazil created in 2017 by IBGE. These regions were created to replace the "Micro Regions" division. Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
read_immediate_region( code_immediate = "all", year = 2019, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_immediate_region( code_immediate = "all", year = 2019, simplified = TRUE, showProgress = TRUE, cache = TRUE )
code_immediate |
6-digit code of an immediate region. If the two-digit
code or a two-letter uppercase abbreviation of a state is passed, (e.g.
33 or "RJ") the function will load all immediate regions of that state.
If |
year |
Numeric. Year of the data in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read an specific immediate region im <- read_immediate_region(code_immediate=110006) # Read immediate regions of a state im <- read_immediate_region(code_immediate=12) im <- read_immediate_region(code_immediate="AM") # Read all immediate regions of the country im <- read_immediate_region() im <- read_immediate_region(code_immediate="all")
# Read an specific immediate region im <- read_immediate_region(code_immediate=110006) # Read immediate regions of a state im <- read_immediate_region(code_immediate=12) im <- read_immediate_region(code_immediate="AM") # Read all immediate regions of the country im <- read_immediate_region() im <- read_immediate_region(code_immediate="all")
The data set covers the whole of Brazil and it includes indigenous lands from all ethnicities and in different stages of demarcation. The original data comes from the National Indian Foundation (FUNAI) and can be found at https://www.gov.br/funai/pt-br/atuacao/terras-indigenas/geoprocessamento-e-mapas. Although original data is updated monthly, the geobr package will only keep the data for a few months per year.
read_indigenous_land( date = 201907, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_indigenous_land( date = 201907, simplified = TRUE, showProgress = TRUE, cache = TRUE )
date |
Numeric. Date of the data in YYYYMM format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read all indigenous land in an specific date i <- read_indigenous_land(date=201907)
# Read all indigenous land in an specific date i <- read_indigenous_land(date=201907)
The intermediate Geographic Areas are part of the geographic division of Brazil created in 2017 by IBGE. These regions were created to replace the "Meso Regions" division. Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
read_intermediate_region( code_intermediate = "all", year = 2019, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_intermediate_region( code_intermediate = "all", year = 2019, simplified = TRUE, showProgress = TRUE, cache = TRUE )
code_intermediate |
4-digit code of an intermediate region. If the
two-digit code or a two-letter uppercase abbreviation of a state is
passed, (e.g. 33 or "RJ") the function will load all intermediate
regions of that state. If |
year |
Numeric. Year of the data in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read an specific intermediate region im <- read_intermediate_region(code_intermediate=1202) # Read intermediate regions of a state im <- read_intermediate_region(code_intermediate=12) im <- read_intermediate_region(code_intermediate="AM") # Read all intermediate regions of the country im <- read_intermediate_region() im <- read_intermediate_region(code_intermediate="all")
# Read an specific intermediate region im <- read_intermediate_region(code_intermediate=1202) # Read intermediate regions of a state im <- read_intermediate_region(code_intermediate=12) im <- read_intermediate_region(code_intermediate="AM") # Read all intermediate regions of the country im <- read_intermediate_region() im <- read_intermediate_region(code_intermediate="all")
Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
read_meso_region( code_meso = "all", year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_meso_region( code_meso = "all", year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE )
code_meso |
The 4-digit code of a meso region. If the two-digit code or
a two-letter uppercase abbreviation of a state is passed, (e.g. 33 or
"RJ") the function will load all meso regions of that state. If
|
year |
Numeric. Year of the data in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read specific meso region at a given year meso <- read_meso_region(code_meso=3301, year=2018) # Read all meso regions of a state at a given year meso <- read_meso_region(code_meso=12, year=2017) meso <- read_meso_region(code_meso="AM", year=2000) # Read all meso regions of the country at a given year meso <- read_meso_region(code_meso="all", year=2010)
# Read specific meso region at a given year meso <- read_meso_region(code_meso=3301, year=2018) # Read all meso regions of a state at a given year meso <- read_meso_region(code_meso=12, year=2017) meso <- read_meso_region(code_meso="AM", year=2000) # Read all meso regions of the country at a given year meso <- read_meso_region(code_meso="all", year=2010)
The function returns the shapes of municipalities grouped by their respective metro areas. Metropolitan areas are created by each state in Brazil. The data set includes the municipalities that belong to all metropolitan areas in the country according to state legislation in each year. Original data were generated by Institute of Geography. Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674).
read_metro_area( year = 2018, code_state = "all", simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_metro_area( year = 2018, code_state = "all", simplified = TRUE, showProgress = TRUE, cache = TRUE )
year |
Numeric. Year of the data in YYYY format. Defaults to |
code_state |
The two-digit code of a state or a two-letter uppercase
abbreviation (e.g. 33 or "RJ"). If |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read all official metropolitan areas for a given year m <- read_metro_area(2005) m <- read_metro_area(2018)
# Read all official metropolitan areas for a given year m <- read_metro_area(2005) m <- read_metro_area(2018)
Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
read_micro_region( code_micro = "all", year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_micro_region( code_micro = "all", year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE )
code_micro |
5-digit code of a micro region. If the two-digit code or a
two-letter uppercase abbreviation of a state is passed, (e.g. 33 or
"RJ") the function will load all micro regions of that state. If
|
year |
Numeric. Year of the data in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read an specific micro region a given year micro <- read_micro_region(code_micro=11008, year=2018) # Read micro regions of a state at a given year micro <- read_micro_region(code_micro=12, year=2017) micro <- read_micro_region(code_micro="AM", year=2000) # Read all micro regions at a given year micro <- read_micro_region(code_micro="all", year=2010)
# Read an specific micro region a given year micro <- read_micro_region(code_micro=11008, year=2018) # Read micro regions of a state at a given year micro <- read_micro_region(code_micro=12, year=2017) micro <- read_micro_region(code_micro="AM", year=2000) # Read all micro regions at a given year micro <- read_micro_region(code_micro="all", year=2010)
This function reads the official data on the municipal seats (sede dos municipios) of Brazil. The data brings the geographical coordinates (lat lon) of municipal seats for various years between 1872 and 2010. Original data were generated by Brazilian Institute of Geography and Statistics (IBGE).
read_municipal_seat(year = 2010, showProgress = TRUE, cache = TRUE)
read_municipal_seat(year = 2010, showProgress = TRUE, cache = TRUE)
year |
Numeric. Year of the data in YYYY format. Defaults to |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read municipal seats in an specific year m <- read_municipal_seat(year = 1991)
# Read municipal seats in an specific year m <- read_municipal_seat(year = 1991)
Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674).
read_municipality( code_muni = "all", year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE, keep_areas_operacionais = FALSE )
read_municipality( code_muni = "all", year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE, keep_areas_operacionais = FALSE )
code_muni |
The 7-digit identification code of a municipality. If
|
year |
Numeric. Year of the data in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
keep_areas_operacionais |
Logic. Whether the function should keep the
polygons of Lagoas dos Patos and Lagoa Mirim in the State of Rio Grande
do Sul (considered as areas estaduais operacionais). Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read specific municipality at a given year mun <- read_municipality(code_muni = 1200179, year = 2017) # Read all municipalities of a state at a given year mun <- read_municipality(code_muni = 33, year = 2010) mun <- read_municipality(code_muni = "RJ", year = 2010) # Read all municipalities of the country at a given year mun <- read_municipality(code_muni = "all", year = 2018)
# Read specific municipality at a given year mun <- read_municipality(code_muni = 1200179, year = 2017) # Read all municipalities of a state at a given year mun <- read_municipality(code_muni = 33, year = 2010) mun <- read_municipality(code_muni = "RJ", year = 2010) # Read all municipalities of the country at a given year mun <- read_municipality(code_muni = "all", year = 2018)
This data set includes the neighborhood limits of 720 Brazilian municipalities. It is based on aggregations of the census tracts from the Brazilian census. Only 2010 data is currently available.
read_neighborhood( year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_neighborhood( year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE )
year |
Numeric. Year of the data in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read neighborhoods of Brazilian municipalities n <- read_neighborhood(year=2010)
# Read neighborhoods of Brazilian municipalities n <- read_neighborhood(year=2010)
This function reads the official data on population arrangements (Arranjos Populacionais) of Brazil. Original data were generated by the Institute of Geography and Statistics (IBGE) For more information about the methodology, see details at https://www.ibge.gov.br/apps/arranjos_populacionais/2015/pdf/publicacao.pdf
read_pop_arrangements( year = 2015, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_pop_arrangements( year = 2015, simplified = TRUE, showProgress = TRUE, cache = TRUE )
year |
Numeric. Year of the data in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read urban footprint of Brazilian cities in an specific year uc <- read_pop_arrangements(year=2015)
# Read urban footprint of Brazilian cities in an specific year uc <- read_pop_arrangements(year=2015)
Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
read_region(year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE)
read_region(year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE)
year |
Numeric. Year of the data in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read specific year reg <- read_region(year=2018)
# Read specific year reg <- read_region(year=2018)
Data comes from the School Census collected by INEP, the National Institute for Educational Studies and Research Anisio Teixeira. The date of the last data update is registered in the database in the column 'date_update'. These data uses Geodetic reference system "SIRGAS2000" and CRS(4674). The coordinates of each school if collected by INEP. Periodically the coordinates are revised with the objective of improving the quality of the data. More information available at https://www.gov.br/inep/pt-br/acesso-a-informacao/dados-abertos/inep-data/catalogo-de-escolas/
read_schools(year = 2020, showProgress = TRUE, cache = TRUE)
read_schools(year = 2020, showProgress = TRUE, cache = TRUE)
year |
Numeric. Year of the data in YYYY format. Defaults to |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read all schools in the country s <- read_schools( year = 2020)
# Read all schools in the country s <- read_schools( year = 2020)
This data set covers the whole of Brazilian Semiarid as defined in the resolution in 23/11/2017). The original data comes from the Brazilian Institute of Geography and Statistics (IBGE) and can be found at https://www.ibge.gov.br/geociencias/cartas-e-mapas/mapas-regionais/15974-semiarido-brasileiro.html?=&t=downloads
read_semiarid( year = 2017, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_semiarid( year = 2017, simplified = TRUE, showProgress = TRUE, cache = TRUE )
year |
Numeric. Year of the data in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read Brazilian semiarid a <- read_semiarid(year=2017)
# Read Brazilian semiarid a <- read_semiarid(year=2017)
Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
read_state( code_state = "all", year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_state( code_state = "all", year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE )
code_state |
The two-digit code of a state or a two-letter uppercase
abbreviation (e.g. 33 or "RJ"). If |
year |
Numeric. Year of the data in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read specific state at a given year uf <- read_state(code_state=12, year=2017) # Read specific state at a given year uf <- read_state(code_state="SC", year=2000) # Read all states at a given year ufs <- read_state(code_state="all", year=2010)
# Read specific state at a given year uf <- read_state(code_state=12, year=2017) # Read specific state at a given year uf <- read_state(code_state="SC", year=2000) # Read all states at a given year ufs <- read_state(code_state="all", year=2010)
Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
read_statistical_grid( code_grid, year = 2010, showProgress = TRUE, cache = TRUE )
read_statistical_grid( code_grid, year = 2010, showProgress = TRUE, cache = TRUE )
code_grid |
If two-letter abbreviation or two-digit code of a state is
passed, the function will load all grid quadrants that
intersect with that state. If |
year |
Numeric. Year of the data in YYYY format. Defaults to |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
# Read a particular grid at a given year grid <- read_statistical_grid(code_grid = 45, year=2010) # Read the grid covering a given state at a given year state_grid <- read_statistical_grid(code_grid = "RJ")
# Read a particular grid at a given year grid <- read_statistical_grid(code_grid = 45, year=2010) # Read the grid covering a given state at a given year state_grid <- read_statistical_grid(code_grid = "RJ")
This function reads the official data on the urban footprint of Brazilian cities in the years 2005 and 2015. Original data were generated by the Institute of Geography and Statistics (IBGE) For more information about the methodology, see details at https://biblioteca.ibge.gov.br/visualizacao/livros/liv100639.pdf
read_urban_area( year = 2015, code_state = "all", simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_urban_area( year = 2015, code_state = "all", simplified = TRUE, showProgress = TRUE, cache = TRUE )
year |
Numeric. Year of the data in YYYY format. Defaults to |
code_state |
The two-digit code of a state or a two-letter uppercase
abbreviation (e.g. 33 or "RJ"). If |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_concentrations()
,
read_weighting_area()
# Read urban footprint of Brazilian cities in an specific year d <- read_urban_area(year=2005)
# Read urban footprint of Brazilian cities in an specific year d <- read_urban_area(year=2005)
This function reads the official data on the urban concentration areas (Areas de Concentracao de Populacao) of Brazil. Original data were generated by the Institute of Geography and Statistics (IBGE) For more information about the methodology, see details at https://www.ibge.gov.br/apps/arranjos_populacionais/2015/pdf/publicacao.pdf
read_urban_concentrations( year = 2015, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_urban_concentrations( year = 2015, simplified = TRUE, showProgress = TRUE, cache = TRUE )
year |
Numeric. A year number in YYYY format. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_weighting_area()
# Read urban footprint of Brazilian cities in an specific year uc <- read_urban_concentrations(year=2015)
# Read urban footprint of Brazilian cities in an specific year uc <- read_urban_concentrations(year=2015)
Only 2010 data is currently available.
read_weighting_area( code_weighting = "all", year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE )
read_weighting_area( code_weighting = "all", year = 2010, simplified = TRUE, showProgress = TRUE, cache = TRUE )
code_weighting |
The 7-digit code of a Municipality. If the two-digit code
or a two-letter uppercase abbreviation of a state is passed, (e.g. 33 or "RJ")
the function will load all weighting areas of that state. If |
year |
Numeric. Year of the data. Defaults to |
simplified |
Logic |
showProgress |
Logical. Defaults to |
cache |
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to |
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
# Read specific weighting area at a given year w <- read_weighting_area(code_weighting=5201108005004, year=2010) # Read all weighting areas of a state at a given year w <- read_weighting_area(code_weighting=53, year=2010) # or w <- read_weighting_area(code_weighting="DF", year=2010) plot(w) # Read all weighting areas of a municipality at a given year w <- read_weighting_area(code_weighting=5201108, year=2010) plot(w) # Read all weighting areas of the country at a given year w <- read_weighting_area(code_weighting="all", year=2010)
# Read specific weighting area at a given year w <- read_weighting_area(code_weighting=5201108005004, year=2010) # Read all weighting areas of a state at a given year w <- read_weighting_area(code_weighting=53, year=2010) # or w <- read_weighting_area(code_weighting="DF", year=2010) plot(w) # Read all weighting areas of a municipality at a given year w <- read_weighting_area(code_weighting=5201108, year=2010) plot(w) # Read all weighting areas of the country at a given year w <- read_weighting_area(code_weighting="all", year=2010)